

 Navigation

 	
 index

 	mold 0.1 documentation

mold

The idea is to use existing standards and to stay out of the way. To that end,
the master and minion consist of normal scripts that read stdin and write to
stdout and stderr.

Script interface

All scripts are expected to use the standard input/output file
descriptors plus an optional logging control file descriptor (fd 3):

	stdin (0): input comes from stdin. Usually this will be a JSON
document.

	stdout (1): output is written to stdout. Usually this will be
a JSON document.

	stderr (2): errors and debugging are written to stderr. The script may
write to stderr and still be considered successful. Success is
determined solely by the exit code. Things written to stderr do NOT
need to be JSON documents.

	channel3 (3): Things written to this channel are passed through to the
historian. It is expected that this channel will be used to upload log files,
indicate steps in a process, label stdin/out/err for each spawned process,
etc...

A script should not depend on this file descriptor being available. So
these two calls should have the same stdout, stderr and exit code given the
same stdin:

/bin/bash some_script
/bin/bash some_script 3>/dev/null

Scripts must return 0 to indicate success and any other exit code to indicate
failure.

Master

The master’s goal is to direct the configuration of systems by communicating
with minions.

On a master machine, there will be a master directory with a layout similar to
this:

master/
 logs/
 certs/
 actors/
 prescribe
 choreograph

prescribe script

This script accepts a fact document on stdin and produces a list of desired
resources states for the minion identified by the given fact document.

choreograph script

Given a set of facts, a prescription and the current state of each resource in
the prescription, this script produces a list of steps including:

	desired resource states

	one-time resource actions

Minion

The minion’s goal is to configure the system on which he lives.

Ways of configuring a machine through the minion

You can send messages over the network:

You can execute commands directly from the shell (using the same code path as
the network uses)

Scripts

On a minion machine, there will be a minion directory with a layout similar to
this:

minion/
 logs/
 certs/
 facts/
 os
 resources/
 file
 cron
 user
 service

Fact scripts

The executable scripts in minion/facts/ accept no arguments or stdin. They
return facts about the system on stdout.

When a minion is asked for the facts of the system, all the scripts in the
minion/facts/ directory are run and combined into a single fact document.
For instance, the output of minion/facts/foo might be:

{
 "cats": 10,
 "dogs": 20,
 "gorillas": "no gorillas"
}

This would be combined into the single fact document by using the filename
foo as the key:

{
 "foo": {
 "cats": 10,
 "dogs": 20,
 "gorillas": "no gorillas"
 }
}

Adding custom facts is as simple as putting an executable file in
minion/facts/ that writes a fact document to stdout.

Resource scripts

The executable scripts in minion/resources/ each define the way a resource
is handled. They must accept as a first command line argument the action to
be performed for that resource. For instance, to inspect the state of the
file /tmp/foo you would do something like:

$ echo '{"path":"/tmp/foo"}' | minion/resources/file inspect
{
 "kind": "file",
 "path": "/tmp/foo",
 "exists": false
}

And to make /tmp/foo conform to an expected state, you could do:

$ cat | minion/resources/file conform
{
 "path": "/tmp/foo",
 "user": "joe",
 "src": "http://www.example.com/foo.png"
}
^D

Some resources support one-time actions (such as restarting a service).
These are supported by using a custom command-line argument (in place of
inspect or conform). To restart a service you might do:

$ cat | minion/resources/service restart
{
 "name": "sshd"
}
^D

To add a custom resource, put an executable file in minion/resources/ that
behaves as indicated above.

channel3 protocol

Channel3 is meant for getting all stdin, stdout, stderr and other
logging/debugging information back to the historian.

Things written to the channel are encoded in JSON tuples wrapped in
netstrings. Each tuple has 3 items:

	Child process name or null if the current process

	Key

	Data

For instance, if I were indicating to my parent process that I
received stdout from my child process (named jim), I would write this to
the log fd:

57:["jim", "stdout", {"line": "This is a line of stdout\n"}],

Data format for various keys

stdout, stdin, stderr

{
 "type": "object",
 "properties": {
 "line": {
 "type": "string",
 "required": true,
 "description": "Line of data",
 },
 "encoding": {
 "type": "string",
 "required": false,
 "description": "Encoding of `line`; no encoding if not provided; options include `b64`"
 }
 }
}

For example:

('jim', 'stdout', {'line': 'this is a line\n'})

Or for binary data:

('joe', 'stderr', {'line': 'AAH/\n', 'encoding': 'base64'})

spawn

{
 "type": "object",
 "properties": {
 "path": {
 "type": "string"
 },
 "env": {
 "type": "object"
 },
 "args": {
 "type": "array"
 },
 "user": {
 "type": "string"
 },
 "group": {
 "type": "string"
 }
 }
}

For example:

('newchild', 'spawn', {
 'path': '/tmp/foo',
 'env': {
 'FOO': 'something',
 'USER': 'joe',
 },
 'args': ['cat', 'afile'],
 'user': 'joe',
 'group': 'joe',
})

exitcode

{
 "type": "integer",
}

For example:

('newchild', 'exitcode', 3)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Matt Haggard.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	mold 0.1 documentation

Index

 Copyright 2012, Matt Haggard.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		mold 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Matt Haggard.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

